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Abstract

Office buildings contain large sensor network de-
ployments to monitor and maintain their internal envi-
ronment. They also consume a significant amount of en-
ergy. This paper proposes the use of the use of horizon-
tal layering, rather than the current vertical-solution ap-
proach, to expose the building data plane and enable in-
teroporable software services and applications that mon-
itor and control the building environment. We present
our instantiation of this approach, which includes a data
plane (sSMAP) and storage service (IS4). Furthermore,
we describe a set of applications built in this ecosystem.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Com-
munications Applications

General Terms
Standardization, Design

Keywords
Building Monitoring, Energy, Sensor Networks

1 Introduction

According to a 2010 Energy Information Adminis-
tration (EIA) report, the commercial sector accounts for
19% of all energy consumption in the United States [4],
much of which is spent in buildings and much of which
is thought to be wasted. Buildings are already some of
the largest and most prevalent deployments of “sensor
networks” in the world, although they are not typically
recognized as such. Locked in proprietary stovepipe so-
lutions or behind closed interfaces, a modern commer-
cial building contains thousands of sensors and actua-

tors more or less the same as those used in a typical
sensor network deployment: temperature, humidity, and
power are the most common transducers. These two
facts make buildings perhaps the most significant appli-
cation area for sensor networks in the near term: many
commercial buildings already contain the dense instru-
mentation often posited as the goal of sensor network
deployments, but combine it with a relatively unsophis-
ticated approach to applying those data to a host of dif-
ferent problems and applications. Through better use
of existing systems, we may be able to make a dent in
buildings’ energy usage.

Unlike most computing systems, buildings last for
decades and are upgraded many times — fully 20% of
U.S. commercial floor space in use in 1995 was pre-
WWII construction [3]. As it turns out, the two engi-
neering buildings at UC Berkeley, Cory Hall and Soda
Hall, capture this generational spread well: Cory Hall
was completed in 1950 and has been upgraded several
times since then, while Soda Hall is “new” construc-
tion, entering service in 1994. Given the long life-span
of building stock, it is impossible to effectively inves-
tigate this problem without integrating legacy buildings
and equipment into any proposed solution.

Both buildings are relatively well instrumented; Soda
Hall has a building management system from Barring-
ton Systems and over 1300 sense points, while Cory
Hall is in the process of being extensively instrumented.
Data from the systems are periodically backhauled into
the campus-wide Supervisory Control and Data Acqui-
sition (SCADA) network, which is then archived on CD-
ROM. Since these management systems are predomi-
nantly responsible for maintaining a comfortable indoor
environment, most of the sensors deal with lighting and
HVAC. Accessing this data is neither a simple nor pleas-
ant experience.

In the near future, there will be a great variety of
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what makes it such an exciting application area to work
in. This paper does not solve the whole problem of
breaking open building data stovepipes and fully realiz-
ing the value of that information; nor does it claim com-
plete novelty in this area, as pieces of existing systems
such as BACnet, LonTalk, and Modbus are in fact open
standards. Rather, we draw ideas from contemporary
system design such as data independence, application
portability, and streaming queries to construct an imper-
fect approximation of what we wish existed: a system
where all building sensors share a simple common rep-
resentation, where services for building data storage are
available, shared, and uniform, and most fundamentally,
where building “applications” can exist.

The applications we want to build benefit from the
same sort of “hardware abstraction layer” that software
normally provides, so that each application can be ex-
ecuted without tuning it specifically and exquisitely for
a particular building. Therefore, that is where we start,
creating a building information bus to let any application
talk to any sensor or actuator. In the following sections
of the paper, we discuss our design goals for building
applications in more depth, and then dive into a discus-
sion of how to realize them for two real buildings: Cory
and Soda Halls. We conclude with the first applications
we have built, and plans for future work.

2 Architecture

Today’s typical building management system con-
sists of front-end sensors which periodically report their
data to a back-end database over one or more link tech-
nologies: RS-485, raw Ethernet frames, and IP net-
works are common. Several computers are typically
also present, and present an interface to users for ad-
justing set points and setting schedules; these are then
enacted by sending commands back to the front-end de-
vices (Remote Terminal Units, in Modbus terminology).
This straightforward architecture is simple and makes
sense when computing is expensive, because it mini-
mizes the functionality placed at the actual sense points.
As processing gets ever cheaper, it makes sense to re-
evaluate these design decisions, especially as systems
converge on IP as their network layer.

What is missing from this architecture are applica-
tions: the typical building management systems pro-
vides no hooks for extensibility, and no context for exe-
cuting third-party code. Given that sensors of the future
(and even sensors today) can support significant local
functionality, the most important architectural change
we make is a shift to a service oriented architecture.
In this conception, sensors and meters provide a service
which exposes their underlying functionality; this func-
tionality is then available to any authorized user. The re-
sult is less of a vertical stack then a collection of servers
forming a platform; thus, we refer to it as a “building
operating system.”

Some core services which are not sensors are also
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Figure 1. Architecture of the building operating sys-
tem. Legacy devices such as Modbus branch meters
implement SMAP using proxies, while IPv6-based
sensors in a wireless mesh network implement sMAP
directly. Core services and applications interface
with any metering resource uniformly via SMAP. In
this example, a visualization application graphs real-
time energy readings from both plug-load meters
and from branch meters.

necessary. For instance, location, authentication, and
database services are critically important. Thus, our
overall design consists of a set of service definitions
which communicate using Internet standards and collec-
tively provide an execution context for applications.

Figure 1 shows the architecture and the set of foun-
dational services for a building operating system. At the
heart of this design is an abstraction layer, either inte-
grated directly into the sensors (for newer devices such
as [P-based sensors) or on a gateway (for legacy devices
such as Modbus based meters). The protocol for this
layer is called SsMAP, the Simple Measuring and Actu-
ation Profile which provides uniform access to a large
subset of devices typically found in a building. This
layer is the “hardware abstraction layer”; below it, code
may be device-specific. Running on top of the data bus
are core OS services: storage, authentication, and loca-
tion. Each of these defines a set of protocols and service
definitions; for instance, the storage service is called
IS4: the Integrated Sensor-Stream Storage System.

2.1 Data Sources

In complex environments such as a commercial
building, diverse classes of sensors, meters, and ac-
tuators are spread throughout the building, monitor-
ing thousands of sense points at various granularities.
SMAP abstracts these myriad data sources and allows
uniform access, enabling applications to rely on a cer-



tain set of semantics. Therefore, a key part of our project
is to understand some of the most frequently used data
sources and provide a layer that implements SMAP on
top of them.

2.1.1 Example Sources

One of the most frequently used protocols in exist-
ing building management systems is Modbus. It defines
a payload format for reading and writing virtual device
“registers,” and is typically run directly on a link-layer;
the common choices are the RS-485 serial link or Eth-
ernet. In order to interface with a particular device such
as the Veris panel meter measuring our lab, a developer
must know the register addresses of the fields he wishes
to read out, as well as understand the packing of any
wide or floating-point fields (Modbus natively supports
only 16-bit big-endian integer representation.)

Wireless building management systems will also
become increasingly common in the next few years,
based on WirelessHART, ISA 100.11a, or the Zig-
bee/HomePlug Smart Energy Profile 2.0 (SEP2) [9, 5,
8]. All are based on IPv6, using 61lowpan header com-
pression and specify (or will specify) a full network
stack from application to link-layer. Most relevant to
this discussion is the fact that SEP2 has yet to be spec-
ified, and ISA 100.11a supports tunneling legacy proto-
cols, so one could implement SMAP (or anything else)
on top of it. On the academic side, researchers have
explored the challenges of building efficient low-power
support for Internet protocols [7, 10]; this work will for
a key part of the building operating system of the fu-
ture. To explore the viability of the emerging standards-
compliant stack, we have included in our evaluation an
implementation of SMAP running on a microcontroller
using draft versions of the emerging 6lowpan standards.

SCADA, short for “Supervisory Control and Data
Acquisition” is a common catch-all name for a larger
system constructed from some of the elements we have
discussed. It typically includes both front-end sensors,
supervisory control functionality (changing set points),
and visualization tools. These systems are also often
capable of storing archival data for historical analysis.
Cory and Soda Halls currently back-haul their system
data to a central collection point on campus once per
day, where it is archived to CD-ROM. To further in-
tegrate with this legacy data, we have implemented a
filter for this format which allows historical data from
the SCADA to be put into the IS4 (Section 2.3.1) stor-
age system. Although we are presently unable to ac-
cess real-time data, the historical readings are useful for
many purposes.

2.2 sMAP

Building on the work proceeding in standards bodies
and proven Internet protocols, SMAP is built on top of
HTTP and TCP/IP. Objects are represented using JSON
schema. These choices were chosen because they al-
ready have wide tool support; creating, validating, and

sending a JSON object to a RESTful service point is
only a few lines of code in most languages, and some
(i.e., Ruby) even provide “RESTful-object mappings.”
Since it is the common interchange layer where the data
meets the road, it is important that the layer not only
exist, but also be well-designed so that many different
transducers may be consistently represented.

/ # list resource under URI root [GET]
/data # list sense points under resource data [GET]
/ [sense_point] # select a sense points [GET]
/meter # meters provide this service [GET]
/[channel] # a particular channel [GET]
/reading # meter reading [GET]
/format # calibration and units [GET/POST]
/parameter  # sampling parameter [GET/POST]
/profile # history of readings [GET]
/report # create and query periodic reports [GET/POST]

POST requests supply JSON objects as arguments:
POST: http://meterl.cs.berkeley.edu/report
{ "ReportResource" : "/data/325/meter/*/reading",
"ReportDeliverylLocation" :
"http://webs.cs.berkeley.edu/receivereports.php",
"Period" : 6@, "Minimum" : 5@, "Maximum" : 100 }

Figure 2. The data/ fragment of the sSMAP RESTful
API

The goal of sSMAP is to represent a single device, uni-
formly providing all the information necessary to query
all sensors, meters, and actuators. A sensor is a device
which instantaneously samples a physical quantity (such
as current or light), while a meter integrates such a value
over time (for instance, energy or flow volume.) An
actuator is a device which may either convert a digital
quantity to an analog one or control a set point; relays,
thermostats, and valves are examples of actuators.
2.2.1 Data

A fragment of the SMAP service definition is shown
in Figure 2; this particular piece deals with the represen-
tation of meters (sensors have a similar representation).
SMAP is hierarchical, and allows a single device to have
multiple sense points, each of which instrument a single
physical process. A sense point may also have multi-
ple channels. This corresponds to the reality that from
a single instrumented sense point such as a Hall-effect
sensor, a device may derive current (RMS and peak),
instantaneous power, metered energy (over some time
interval), and power factor. This would be represented
as a single sense point with multiple sensor channels.

Integrated with the sensor reading itself which is
stored in the reading resource are all the ancillary facts
necessary to interpret the data. formatting contains
information on what is being measured and how to in-
terpret raw readings, specifying engineering units and
calibration constants. parameter contains information
on the sampling rate in use; this can be used to deter-
mine when reading will update. Finally, profile is an
optional resource which allows a SMAP server to buffer
a fixed number of old readings.
2.2.2 Reporting

sMAP also allows periodic reports to be sent via
“pushing”; however, very small embedded implementa-
tions may not support this. To request a periodic report,




Device (# sense points) Measured load
Veris E30 Modbus meter (42) | RAD Lab wall panel
ACme plug-load meter (50) RAD Lab plug loads
Dent PowerScout 18 (162) Cory Hall testbed
CA ISO Proxy (1) CA grid demand

Table 1. sSMAP data sources.

aclient sends a JSON object to the SMAP server specify-
ing what resource on the server should be reported, and
the URL of the destination. Two schemes are currently
supported: http and udp. When using http, the re-
quested resource is sent via an HTTP POST to the URL
specified; when using udp, the document is sent in a
UDP packet, instead.becoming increasingly popular on
the web for pushing message updates, as it integrates
well with existing deployments and avoids supporting a
new protocol like XMPP. Periodic reporting is critical
to allow sMAP to integrate into full-fledged stream pro-
cessing system, since it allows a system to create event
triggers and avoid inefficient polling.

2.2.3  Efficiency

HTTP, while itself relatively inefficient, also provides
some significant advantages. Devices on low-bandwidth
links may have their sMAP data cached by intermediate
HTTP proxies, and it also provides basic security and
authentication functionality. Since even JSON objects
may be too verbose for links with very small MTUs, we
have also defined a compressed representation for use
in these cases. Taking advantage of information con-
tained in the schema to eliminate strings, enumerated
types, and extra markup, a typical reading object can
be reduced from around 94 octets to 22.

2.3 OS Services

sMAP provides a narrow waist for data sharing be-
tween devices and the applications that make use of their
data. This decouples device changes from the services
and applications built on top of them. The set of cru-
cial services for building applications include storage,
authentication, and location.

2.3.1 Storage

We have experimented with a storage service to store
and manage all data streams produced by sMAP data
sources. The Integrated Sensor Stream Storage System
(IS4) is a RESTful, stream-based storage system which
subscribes to SMAP feeds. IS4 allows published data
streams to be queried historically and in real-time, while
also storing and managing their metadata. 1S4 accepts
data from any sMAP data source. Since data produc-
ers are broadly defined, producers are not limited to de-
vices; they may also be proxies, modeling processes,
or other sources. Consequently, data consumers (sub-
scribers) can also be data producers (publishers). This is
useful for connecting arbitrary components, dependent
only on each other’s data. For example, a modeler may
subscribe to various data streams and publish its output

back to IS4. An actuator can subscribe to the modeler’s
stream and use it to make decisions about how to control
a set of devices. Furthermore, if the actuator publishes
an event stream, a visualizer may subscribe to the actua-
tion stream and the modeling stream, showing end-users
their relationship in real time.
2.3.2 Authentication and Location Services
Although not currently available, authentication and
location services are crucial to building applications.
SMAP is built over HTTP which already provides basic
security and authentication functionality but it should
be extended as a broader service for controlling the ac-
cess to devices. This is particularly important for man-
aging actuation privileges. Unauthorized users and/or
processes should not be able to view or control any de-
vice without the proper permissions. This may lead to
unwanted, malicious, and even dangerous activity that
may cause harm to building equipment and occupants.
A location service is also necessary to manage the
placement and replacement of devices to/from various
locations. Knowing the location information is also nec-
essary to assocaiate the data stream to the context in
which it is collected. This is a major burden on sys-
tem administrators today as all the information is man-
ually entered. As buildings evolve and devices are re-
placed/removed, changes often go unrecorded. This
usually leads to useless data collection as context-less
data becomes meaningless.

3 Applications

Including sMAP data in an existing application is
very easy, due to wide tool support for web standards.
Figure 3 shows a single line of Python which will allow
the application to fetch and parse the current values for
all meters hosted by the machine named “veris.” The
only step missing is validating the returned document
against the JSON schema, which is optional.

url = "http://veris/data/*/meter/0/reading’
doc = simplejson.load(urllib.urlopen (url))
Figure 3. Loading meter readings from a sMAP
source in python

A simple application we built to expose all available
sMAP functionality is the visualization console. This
is a web app targeted at developers which can use any
sMAP service and generate a GUI showing the available
sense points, live readings, and time-series plots of any
available cached data. This is the application shown as
part of the larger ecosystem in Figure 1.

The second application we built leverages web tech-
nologies to provide personalized user feedback and con-
trol of a building. Using the Android SDK [2], we de-
veloped an handheld “app” which lets a user directly
interact with the building sensors. The app provides a
three-step interaction with the building: 1. locate, 2.
visualize, and 3. actuate.



In the first step, the user locates himself within the
building by scanning one of the QR codes [6] placed
on various rooms and objects. These codes encode the
URL of the building resource provided for that location
or device; for instance, a code for a room enumerates
the sensors within that room, while a plug-load meter
encodes the location of its SMAP source.

In the second step, the user visualizes the data pro-
vided by the resource. For instance, the app can show
time-series data of consumption over time for instru-
mented outlets, and total-power breakdowns for many
of our conference rooms by fetching it from IS4, the
storage engine. It is at this stage when the user can also
create permanent associations with rooms or devices, al-
lowing the app to remember that “this is my outlet,” or
“this is my office.”

Finally, the app allows actuation of certain devices
such as lights and thermostats — the user can switch the
light and adjust the set point of the thermostat.
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Figure 4. User visualization app in action.

We can imagine many variations of this app running
either as a web app or on mobile platforms integrating
ever more data that is becoming available — one obvious
mashup is integrating the personal accounting function-
ality with OpenADR feeds to provide a real-time price
feed for the energy a user is using. Another would be to
use additional location-based services available on the
phone to automatically switch devices off when the user
is not near them — turn off the lights and TV when the
user isn’t home.
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Figure 5. sMAP to Google PowerMeter widget.
Finally, the Google PowerMeter API [1] defines a

protocol for uploading energy data and allows users to
see their energy usage via an iGoogle widget. sMAP
compliments Google PowerMeter by providing the
hardware abstraction for energy monitoring devices. We
wrote a simple “bridge” that sends energy data from
sMAP compliant devices to Google and show that users
can view any sSMAP sources from their iGoogle page, as
seen in Figure 5.

4 Conclusions

The field of “smart energy” is rapidly becoming a
crowded one, and some of the first challenges faced are
ones of integration rather then foundational technology.
An architecture like SMAP makes it easier to share data
both within and across organizational lines since only
one gateway for each obscure Modbus device need be
written, and entities wishing to share data must only
set up permissions to do so. By paying close attention
to uniform information representation and creating ser-
vice definitions, applications will be “portable” between
buildings, an important design goal. In the near future,
we will flesh out the data warehousing capacity of the
building: an entirely different kind of application which
will run “on the building” are analysis and modeling
jobs, which must run using both stored and live data. By
bringing open protocols, open formats, and open data to
the building, we will unleash a significant amount of in-
novation by software developers and designers that is
currently hindered by the sheer difficulty of retrieving
and interpreting this data.
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