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Abstract—This paper presents a study of how empirical ranging
characteristics affect multihop localization in wireless sensor networks.
We use an objective metric to evaluate a well-established parametric
model of ranging called Noisy Disk: if the model accurately predicts the
results of a real-world deployment, it sufficiently captures ranging char-
acteristics. When the model does not predict accurately, we systematically
replace components of the model with empirical ranging characteristics
to identify which components contribute to the discrepancy. We reveal
that both the connectivity and noise components of Noisy Disk fail to
accurately represent real-world ranging characteristics and show that
these shortcomings affect localization in different ways under different
circumstances.

I. INTRODUCTION
Multihop localization in wireless sensor networks enables each

node to determine its location without direct connectivity to nodes
in known positions. Simulation is an important tool for evaluating
multihop localization algorithms, but we have discovered that real-
world performance is often much worse than predicted by simulation.
This discrepancy is consistent with the anecdotal experience of many
researchers in the area and the dearth of systematic comparisons in
the literature. This prediction gap is presumably due to differences
between the theoretical noise models and the empirical noise charac-
teristics of ranging measurements. This paper presents an empirical
evaluation of the Noisy Disk model, which is used almost universally
to model ultrasound and radio signal strength, and identifies where
and how it deviates from real-world characteristics. We use the
prediction gap as a quantitative metric of evaluation: if a model
accurately predicts real-world localization performance, it sufficiently
captures empirical ranging characteristics.
We perform real-world localization deployments using both ul-

trasound and radio signal strength and show that the observed
localization error is much worse than that predicted by the Noisy
Disk model. We propose a new and more accurate method of
simulation that uses statistical sampling techniques and empirical
data in simulation. We systematically replace each component of the
Noisy Disk model with increasingly accurate models to quantify each
component’s contribution to the prediction gap. Our results indicate
that both empirical noise and connectivity characteristics deviate from
the Noisy Disk model, and we demonstrate that these deviations have
significant impact on multihop localization performance.
The rest of this paper is organized as follows: Section II provides

background on ranging, multihop localization and the Noisy Disk
model. Section III describes the ranging and localization techniques
that we used in our real-world deployments. In Section IV we
review traditional simulation techniques and present a new technique
that uses special data collection and statistical sampling to employ
empirical ranging data directly in simulation. In Section V we present
the basic results from our deployments and compare them with
predicted results from the different types of simulations. Sections VI,

VII, VIII and IX draw conclusions from this comparison about the
sufficiency of Noisy Disk in different circumstances. In Section X
we compare our simulation techniques using statistical sampling to
simulation using more traditional parametric models.

II. BACKGROUND

A basic building block of localization is ranging, the process
of estimating the distance between a pair of nodes. Two common
ranging technologies are radio signal strength (RSS) and ultrasonic
time of flight (TOF), both of which introduce noise and uncertainty
to localization. RSS techniques estimate the distance between two
nodes by assuming a known rate of signal attenuation over distance
and measuring the strength of the received RF signal. RSS is
sensitive to channel noise, interference, attenuators and reflections,
all of which have significant impact on signal amplitude. RSS also
suffers from transmitter, receiver, and antenna variability. Ultrasonic
TOF estimates distance by assuming a constant speed of sound and
measuring the time it takes for an acoustic signal to travel between a
pair of nodes. Because TOF relies on the speed of the signal instead
of the magnitude, it is relatively robust to most sources of noise
including attenuators and reflections; the line-of-sight signal should
always arrive at the same time, although it may be stronger or weaker
when it arrives.
For theoretical analysis and simulation, ultrasound and radio

signal strength are almost universally modeled with a Noisy Disk
model, which has two components: noise and connectivity. The
noise component indicates the distribution of the error between the
measured distance and the actual distance (e.g., Gaussian, uniform).
The connectivity component indicates the maximum distance dmax

between two nodes at which a distance estimate can be obtained. For
example, using Gaussian noise, the Noisy Disk defines the distance
estimate d̂ij between nodes i and j in terms of the true distance dij
as

d̂ij =

(
N (dij , σ) dij ≤ dmax

undefined otherwise.
(1)

The Noisy Disk model with no noise component (i.e., it only models
the connectivity between nodes) is also known as the Unit Disk
model.
The Noisy Disk model is ubiquitous in localization research,

but researchers generally acknowledge that noise is not perfectly
Gaussian or uniform, and connectivity is not disk-like. Regardless, it
is still a useful model of noisy ranging estimates. Theoretical analyses
have successfully used the Noisy Disk model to mathematically
derive the maximum likelihood solution to localization [1], lower
bounds on localization error [2], [3], or specific properties about
localization algorithms [4]. The Noisy Disk Model is more commonly
used to evaluate and compare algorithms in simulation [5], [6],



[7], [8], [9], [10], [11], [12]. Several projects collected empirical
ultrasound data [13] or RSS data [14], [15] to derive realistic values
for the parameters dmax and σ, which are then used in simulating
the behavior of various localization algorithms. Other studies use
these parameters for sensitivity analysis by, for example, measuring
accuracy while varying dmax from 1.1 to 2.2 times the average
node spacing and σ from 0 to 50% of dmax or similar values [13],
[16], [17], [18]. Although the Noisy Disk model has been useful for
evaluating and developing multihop localization algorithms, no study
has verified that it accurately predicts the performance of real-world
deployments.
There are two fundamentally different classes of localization algo-

rithms: single hop and multihop. Single hop localization assumes all
nodes in the network have direct ranging connectivity with a set of
nodes in known positions, called anchor nodes. Several commercial
and academic real-world systems using single hop localization have
achieved accurate results [19].
The main drawback of single hop localization is the direct

connectivity requirement between nodes and anchors. To remove
this assumption, researchers have developed multihop localization
algorithms. However, multihop localization introduces many new
challenges. While single hop localization requires only local com-
putation on each node, multihop localization requires long-distance
information transfer and node collaboration. Furthermore, multihop
localization requires evaluation at large scale. In single single hop
localization, the results of a single cell deployment can be generalized
to larger multi-cell deployments because each cell is roughly inde-
pendent. Because of these challenges, multihop localization research
is still mainly focused on theoretical analysis and simulation, with
relatively few successful large scale deployments. In this paper, we
focus exclusively on multihop localization because it relies much
more heavily on high fidelity ranging models to understand error
propagation and use in theoretical analysis and simulation. A survey
of multihop localization algorithms can be found here [18].

III. DEPLOYMENT SETUP
We performed several medium-scale localization deployments with

our localization system and present three of them in this paper. The
first is a 49 node network over a 13x13m asphalt area localized using
ultrasound. The others are 25 and 49 node networks over a 50x50m
grassy area localized using RSS. We chose these three deployments
in part because they represent the canonical multihop deployments
for which many localization algorithms have been designed and
which most localization simulations try to emulate. They also provide
particular insight into the nature of the Noisy Disk model, as we will
see later. Here we present the ranging and localization systems we
used for these deployments, which builds upon and improves some of
the best hardware designs and algorithms from several other systems
to create a unified system that is specially tailored to this localization
problem.
For our RSS deployments, we chose a low-power radio from

several that have been characterized for use with RSS ranging. An
early study showed the RFIDeas badge system to yield 5m range and
2m standard error near 2m range [20], and later studies, including
our own, characterized low-power ASK radios such as the RFM
DR3000 and the RFM TR1000 [20], [21], [22] to yield about 1.5m
standard error at 3m distances and up to 6m standard error at 6m
distances, even in near-ideal conditions. In our deployments, we use
the newer Chipcon CC1000 FSK radio, which was shown in a recent
single hop localization study to provide RSS fidelity similar to that
of more sophisticated 802.11 radios [23]. Our own characterizations

Fig. 1. Ultrasound Deployment. 49 nodes deployed in a random grid pattern
in a parking lot were localized using ultrasound. The ultrasonic transducer
and reflective cone are visible above the node.

show that, in near-ideal conditions and with low transmission power,
the radio has a standard deviation in RSS readings that translates to
about 2m standard error at the maximum range of about 20m, after
calibration.
Our ultrasound hardware combines and improves ideas from sev-

eral ultrasound implementations. Our ultrasonic transducer circuitry
is derived from that of the Medusa node [13], except that we add
a switchable circuit so that a single transducer can be used to both
transmit and receive. Our nodes measure ultrasonic time of flight by
transmitting the acoustic pulse simultaneously with a radio message
so that receivers can measure the time difference on arrival (TDOA)
as described in Cricket [24]. When the transducers are face to face,
our implementation can achieve up to 12m range with less than 5cm
standard error. Comparable implementations were able to achieve
proportionally similar results of 3-5m range with 1-2cm accuracy
[13], [21], [25]. The differences in magnitude are due in part to our
design decision to reduce the center frequency of the transducer from
the standard 40kHz to just above audible range at 25kHz, which
increases both maximum range and error.
Ultrasound transducers are highly directional, and small variations

from a direct face to face orientation can have large effects on error
and connectivity. Two solutions have been proposed to use ultrasound
in multihop networks: aligning multiple transducers outward in a
radial fashion [21] or by using a metal cone to spread and collect
the acoustic energy uniformly in the plane of the other sensor nodes
[25]. We implemented the latter solution as shown in Figure 1. In
this configuration, our nodes achieve about 5m range and 90% of
the errors are within 6.5cm. A comparable implementation achieved
about 3m range [25].
All deployments used the Ad-hoc Positioning System’s (APS) DV-

distance algorithm [16], which is representative of a large class
of distributed localization algorithms that use shortest-path [11],
[26], [27] or bounding-box [28], [29] approximations. APS uses a
distance vector algorithm to approximate the shortest path distance
through the multihop network from each node to each of the anchor
nodes. Each shortest path distance approximates the true distance to
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(a) Topology This specially generated topology with 25 nodes measures
300 different distances with at least 1 distance every .025m between 0.4m
and 5.2m.
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(b) Histogram This histogram shows that thee distances measured by
the topology are uniformly distributed over the ultrasonic range.

Fig. 2. Data Collection

the anchor, reducing the multihop localization problem to a single
hop localization problem with a more complex range estimate. The
approximate distance to each anchor is then used with the anchor
node positions to triangulate the position of each node using linear
least-squares.
APS has been shown to yield comparable results to other dis-

tributed localization algorithms [18] and, intuitively, all of these
algorithms suffer from the same two sources of error. On one hand,
the shortest path between a node and an anchor is almost never a
straight line, and the zig-zag nature serves to lengthen it. On the other
hand, the Bellman-ford algorithm selectively chooses range estimates
with negative errors, so the shortest path estimates become shorter.
Whether the shortest path estimates underestimate or overestimate the
true distances depends on the balance between the denseness of the
connectivity graph and the amount of error in the ranging estimates.
In our implementation, the APS algorithm runs in three fully de-

centralized phases. When the anchor nodes are given their positions,
they trigger a ranging phase in which all nodes estimate the distance
to each of their direct ranging neighbors. The anchors then initiate
a shortest path phase, in which anchors initiate a tree broadcast,
allowing each node to determine its shortest path to each anchor in a
distance vector manner. When all broadcasts are complete, each node
estimates its position in the localization phase. Besides the anchor
nodes being manually localized, the entire process is automated with
no human intervention or central computer and completes in less
than five minutes for each deployment. All ranging estimates, shortest
paths and estimated locations are stored in RAM on the nodes and
are collected by an automated script after each run.
In all deployments the nodes were placed in a random grid

formation, which is like a grid with random noise added to the X
and Y coordinates of each grid location. A random grid prevents
artifacts of the strict regularity of a grid or of the possible network

partitions in a completely random distribution, neither of which would
be representative of a canonical deployment. We delegated the four
nodes nearest to the corners to be the anchor nodes because keeping
all nodes within the convex hull defined by the anchors has been
shown to be optimal [2].
The deployment process was non-trivial, especially for RSS lo-

calization, and addressed issues of noise characterization, triggering
global phase transitions in the network, avoiding collisions during
the ranging phase, and minimizing the number of retransmissions
in the shortest path phase. We also developed several techniques to
obtain better results than those presented here. However, neither the
implementation issues we faced nor the techniques we developed
to increase accuracy is the contribution of this paper. Rather, we
focus on identifying the key factors that must be addressed to obtain
simulation results that closely model real world deployments.

IV. SIMULATION METHODOLOGY
We simulated both the ultrasound and the RSS deployments

described in Section III and compared the simulation results with
the observed deployment results. We use two different techniques
for simulation: the traditional technique based on parametric models
and a new, more accurate technique that we designed based on
statistical sampling. By simultaneously using different simulation
techniques, one for ranging noise and one for ranging connectivity,
we have six different combinations of simulation techniques labeled
in Table 3(a). Traditional simulation is used to generate Gaussian
noise and Unit Disk connectivity while statistical sampling is used
to generate what we call Sampled Noise and Sampled Connectivity.
Both techniques use the same ranging data and therefore the same
noise and connectivity characteristics. The notation C/N stands for
the particular connectivity and noise combination of a simulation. For
example, D/G refers to the simulation with Unit Disk connectivity
and Gaussian noise. Experiments D/N and S/N in the first column



No Noise Gaussian Noise Sampled Noise
Unit Disk Connectivity D/N D/G D/S
Sampled Connectivity S/N S/G S/S

(a) The six kinds of simulation combine three models of noise with two models of
connectivity. Each combination is used to simulate the three actual deployments.
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(b) RSS localization error (49 nodes).
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(c) Ultrasound localization error (49 nodes).
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(d) RSS localization error (25 nodes).

Fig. 3. Experimental Results. Each graph in (b), (c) and (d) compares the results of a real-world deployment with each of the six kinds of simulation in
Table (a). The box indicates median error; the errors bars indicate upper and lower error quartiles.

use simulated connectivity but not simulated ranging noise. In this
section, we describe the two different simulation techniques we used;
the results of the simulation experiments will be discussed in the next
sections.
In traditional simulation, data is generated from a parametric

function. Thus, Gaussian noise is generated for experiments D/G
and S/G with the function N (dij , σ) and Unit Disk connectivity is
generated for experiments D/N, D/G, and D/S using the inequality
dij ≤ dmax. For traditional simulation to be meaningful, the model
parameters dmax and σ should be estimated from empirical ranging
data. The typical data collection technique for ranging is to place
a transmitter and receiver at several known distances and measure
the response [14], [15], [21], although this technique doesn’t account
for several sources of noise such as node variability. Following the
commonly used methodology, in our simulations we used parameters
dmax = 20m, σ = 2m for RSS and dmax = 5m, σ = 6.5cm for
ultrasound.
We developed an alternative simulation technique based on statis-

tical sampling where we generate data for simulation by randomly
drawing measurements from an empirical data set. Define the distri-
butionM(δ, ) to be the empirical distribution of all observed ranging
estimates for distances in the interval [δ − , δ + ]. We generate a
ranging estimate d̂ij for simulation by using the error of a random
sample from M(dij , ). For example, if ḋ is the empirical estimate
selected from M(dij , ), then

d̂ij = dij + (ḋ− ḋa) (2)

where ḋa is the actual distance at which ḋ was measured. Because
ḋ ∼ M(dij , ), the simulation is using empirical distributions
for signal noise and connectivity as long as M(dij , ) accurately
represents ranging characteristics at dij .
The set M(δ, ) can include ranging failures, which are ranging

instances when a pair of nodes fail to obtain a distance estimate.
Ranging failures are necessary to correctly model ranging con-
nectivity. To generate Sampled Noise alone in experiments D/S

and S/S, however, ranging failures are not included in the set. To
generate Sampled Connectivity alone in experiments S/N, S/G, and
S/S, ranging failures are included, and we define two nodes to be
connected if and only if the sampled ranging estimate d̂ij is not a
ranging failure.
The challenge in using this sampling technique is to collect ranging

error and connectivity data with a high enough resolution so that
small values of can be used. For example, if we want to use
= 2.5cm and ultrasound ranging has a maximum range of 10m,

we must take empirical ultrasound measurements at 400 different
distances. Instead of measuring each distance with a single pair of
nodes, all measurements can be taken at once with

√
400 = 20 nodes

in a topology where each pair of nodes measures a different distance.
By adding a few additional nodes, we can get multiple pairs at each
distance. We generated such topologies using rejection sampling, i.e.,
we generated thousands of topologies until one of them exhibited the
desired properties. For example, we used the topology in Figure 2,
which required 25 nodes to obtain 2.5cm resolution over 5m, to
characterize ultrasound. The topology we used for RSS required 30
nodes to obtain 30cm resolution over 30m.
All nodes are placed at random orientations in this topology and

each node transmits 10 times in turn while all other nodes receive.
To remove the bias of each distance being measured by only two
pairs of nodes (the reciprocal pairs A/B and B/A), we repeated this
procedure five times with different mappings of nodes to the topology
locations. These mappings were generated using rejection sampling
to ensure that the same distances were not always measured by the
same pairs. The procedure generated 100 total measurements at each
distance with 10 different transmitter/receiver pairs. Therefore, with
= 0.05m (two inches) the set M(δ, ) is likely to include 400

empirical measurements
Unlike the conventional pairwise technique described above, the

empirical measurements inM(δ, ) are taken with dozens of transmit-
ter/receiver pairs, capturing a broad spectrum of node, antenna, and
orientation variability. Furthermore, the measurements are taken over



several different paths through the environment, capturing variability
due to dips, bumps, rocks or other environmental factors. Finally,
this technique captures connectivity characteristics by fixing the
number of transmissions and measuring the number of readings
at each distance. In contrast, the conventional pairwise technique
described above requires the experimenter to take readings at every
possible distance, burying the degradation of ranging connectivity
with distance.
The rejection sampling algorithms required on average twelve

hours to compute the topology and node mappings. Each data
collection process required approximately 6 hours to complete, with
the bulk of the time needed for data collection and to precisely
measure out the special topology.

V. EXPERIMENTAL AND SIMULATION RESULTS

The ultrasound deployment was repeated 7 times and yielded a
median error of 0.78m. The RSS deployments were repeated 10
times each and yielded median errors of 4.3m and 13.4m error for
the 49 and 25 node deployments, respectively. Each of the three
deployments was simulated with the six simulation combinations
shown in Table 3(a), and each simulated experiment was repeated
100 times. Figure 3 compares the median error of the real-world
deployments to the median errors of the corresponding simulations.
For more detailed analysis of the deployments and errors, see [30],
[31]. Recall the notation C/N stands for the particular connectivity and
noise combination of a simulation. Also, D/* refers to all simulations
with Unit Disk connectivity and */G refers to all simulations with
Gaussian noise.
We can identify the source of error in each deployment by examin-

ing which subset of simulations accurately predicts the observed error
in each deployment. The 49 node RSS deployment in Figure 3(b)
is well predicted by both the */G and */S simulations but not the
*/N simulations. This trend indicates that noise is the dominant
cause of the localization error in this deployment. In contrast, the
49 node ultrasound deployment in Figure 3(c) is well predicted by
the S/* simulations but not the D/* simulations. This indicates that
the ultrasound connectivity is different than the Unit Disk model,
and these deviations dominate noise as the source of error in this
deployment. The 25 node RSS deployment in Figure 3(d) shows a
similar trend; the S/* simulations predict observed error better than
the D/* simulations, but no connectivity/noise combination correctly
predicts all the error in this deployment. This indicates that ranging
characteristics besides noise and connectivity are causing localization
error.
A different ranging characteristic is the dominant source of local-

ization error in each of the three deployments. In one it is noise, in
the other it is connectivity and in the last it is neither of the two. The
following four sections provide a deeper analysis of these trends.

VI. SUFFICIENCY OF NOISY DISK AT HIGH DENSITY

The three empirical deployments fall into two distinct groups: high
ranging density and low ranging density, where ranging density is de-
fined by the average degree in the graph defined by successful ranging
estimates. A recent study shows that localization is quantitatively
different in high ranging density networks than low ranging density
networks, and the transition occurs at an average degree of about
7.5 [18]. As density drops below 7.5, localization accuracy increases
quickly, but it stabilizes at densities higher than 7.5. According to this
criteria, the 49 node RSS deployment has a high ranging density with
average degree of 9 while the 49 node ultrasound and the 25 node
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Fig. 4. Ultrasound Transition Region. The gray scale indicates the loss
rate (or the level of connectivity); the size of the box indicates the fraction
of nodes at that distance with that level of connectivity. The entire range
of ultrasound is a transition region; it exhibits neither bimodal nor disk-like
connectivity.

RSS deployments have low ranging density with average degrees of
6 and 3 respectively.
The 49 node RSS deployment and its corresponding simulations

in Figure 3(b) show that the Noisy Disk model is a sufficient model
of ranging for deployments with high ranging density. The */N
simulations do not accurately predict observed error while all others
do, indicating that ranging noise is the dominant cause of localization
error in this deployment. This makes sense at high densities where,
even with slightly different types of connectivity, the network should
maintain an average degree greater than 7.5, which means the error
will be stable. The fact that the */G and D/* simulations predict
similar results to the */S and S/* simulations indicates that Gaussian
noise and Unit Disk are sufficient models of empirical ranging
characteristics for this deployment.

VII. A TRANSITION REGION IN CONNECTIVITY
Our 49 node ultrasound deployment had an average node spacing

of 2.2m. With a nominal maximum range of 5m, the Unit Disk
model of ultrasound would predict this deployment to have an average
degree of 14, which is well above the threshold for a high density
deployment. However, an average degree of only 6 was actually
observed during deployment, and accordingly, the localization error
was 5.7 times worse than predicted by the Noisy Disk model. A
comparison between the D/* and S/* simulations indicates that a
difference between the Unit Disk and Sampled Connectivity accounts
for most of the error in this deployment. Unlike the 49 node RSS
deployment where noise was the dominant source of localization
error, noise has very little effect in this deployment.
Figure 4 illustrates empirical ultrasound connectivity characteris-

tics, showing the fraction of pairs at each distance that exhibit each
of ten levels of connectivity. This figure illustrates what is commonly
known as a transition region: distances at which some nodes have
100% connectivity while others have 0% connectivity. The unit disk
model assumes that all nearby nodes have 100% connectivity, all
far nodes have 0% connectivity, and that the transition region in
between is very small. Recent studies have shown that, with low-
power radios, the transition region can extend over as much as



50% of the useful radio range, violating the Unit Disk model and
introducing problems for networking algorithms that assume disk-
like connectivity [32]. Figure 4 shows that ultrasound connectivity
is even worse: the transition region extends over the entire range,
and there is no distance that clearly defines the difference between
connected nodes and unconnected nodes.
The transition region seen in ultrasonic connectivity violates

several assumptions made by various localization algorithms about
disk-like connectivity. For example, some algorithms assume that
all non-connected pairs are farther than some distance dmax [33].
However, it is clear from Figure 4 that no such distance exists. Other
algorithms assume that all connected pairs will be closer than some
distance dmax [34], [35]. While this is true for some value of dmax,
any such value must be very large relative to the average ranging
distance. In our deployments, the ultrasound hardware measured
distances more than 50% greater than the nominal maximum range,
and other empirical studies have indicated similar findings for radio
connectivity [27].
Although APS does not make strict assumptions about disk-

like connectivity, it is still greatly affected by the transition region
because, given a certain maximum range for a ranging technique,
a large transition region yields fewer total ranging estimates than
the Unit Disk model would predict. This affects all localization
algorithms by fundamentally reducing the number of constraints on
node locations. However, the effect is most evident when the average
node degree sinks below the threshold of 7.5, as it does in this
network.
A large transition region has an effect on average node degree

similar to reducing the maximum range dmax, which has been shown
to have profound impact on localization [18]. One difference is in the
resulting spatial distribution of neighbors: a transition region would
result in some far neighbors and some close neighbors, while a small
value of dmax would result in all neighbors being very close.

VIII. THE IMPACT OF NON-GAUSSIAN NOISE
While the S/G simulation gets to within 80% of the observed

ultrasound error, it is no closer than the simulation S/N, which
uses no noise at all. This indicates that the magnitude of ultrasound
noise is so small that a Gaussian model of it does not significantly
effect localization error. However, S/S arrives to within 94% of
empirical error, indicating that a difference between Gaussian noise
and Sampled Noise is significantly affecting ultrasonic localization
error. While the impact of non-Gaussian noise on localization error
is small compared to the effect of non-disk like connectivity, it is
significant. Simulations S/G and S/S indicate that it can increase
localization error by at least 16%.
The normality plot in Figure 5, in which deviations of data

points from the line indicate deviations from the Normal distribution,
indicate that ultrasonic ranging generates a heavy-tailed distribution
of noise. In other words, it underestimates and overestimates distances
more than the Gaussian distribution would predict. This can be
detrimental to localization algorithms. With the APS algorithm, for
example, the shortest-path distances become shorter as the tail with
underestimated distances becomes heavier, even if the tail with
overestimated distances also becomes heavier. This is because the
shortest-path algorithm will selectively ignore paths with many over-
estimates and will choose those paths with the most underestimates.
A similar argument holds for all algorithms that use shortest-path,
hop-count [11], [26], [27], or bounding-box [28], [29] techniques.
Similar to the importance of noise itself, the impact of non-

Gaussian noise on APS is highly dependent on node degree. A heavy-
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Fig. 5. Normality Plot of Ultrasound Noise. The special Y-axis of a
normality plot causes normally distributed data to fall in a line. Deviations
of data from the line indicate heavy tails in ultrasound noise.

tailed noise distribution will always serve to shorten shortest-path
distance estimates. However, in sparse networks where the shortest-
path distances are overestimates due to the zig-zag effect, heavy tailed
noise may actually decrease shortest path error. In dense networks
where the shortest paths are relatively straight, heavy-tailed noise is
more likely to increase shortest path error. Furthermore, in dense
networks, the shortest path algorithm can choose between many
alternative paths, so a smaller number of noisy outliers is necessary
to have an impact.

IX. BEYOND NOISE AND CONNECTIVITY

Halving the density of the 49 node RSS deployment to 25 nodes
creates a low-density RSS deployment that reveals several important
insights about RSS localization at low densities. Unlike the ultrasound
deployment in which sampled ultrasound connectivity increased
localization error by a factor of 4.5, sampled RSS connectivity only
increases error by a factor of 2.5. This is likely due to the difference
in the respective sizes of the transition region: the transition region for
low-power radios is known to be at most 50% of the range, whereas
Figure 4 shows that the transition region for ultrasound extends
over the entire range. The remaining prediction gap indicates that
ranging characteristics beyond noise and connectivity are affecting
localization. One such factor may be the non-uniformity of radios
or antennae, which would be expected to influence RSS more than
ultrasound. Non-uniformity of nodes would be expected to have an
effect on connectivity at low densities because some nodes would
have very high degree while others would have very low degree,
effectively creating partitions in the network. This theory is discussed
in Section X.
A solution to the large prediction gap observed in this deployment

might be to simply increase the transmission power in the network
until the average degree of the network is above 7.5. Once the
network has high ranging density, a unit disk model should accurately
predict localization error. Doing this, however, actually increased
error because increasing the transmission power also increases RSS
noise. Increasing the density may close the prediction gap, but it does
not necessarily reduce error. The 25 node deployment will always



have higher error than the 49 node RSS deployment because RSS
ranging is noisier at long distances.

X. STATISTICAL SAMPLING & PARAMETRIC MODELS
Figure 3 indicates that statistical sampling yields a smaller predic-

tion gap than the Noisy Disk model. One way to improve simulation,
therefore, is to replace the model altogether with statistical sampling.
An alternative is to improve the Noisy Disk model, perhaps by bor-
rowing a better model of connectivity from the wireless networking
community [36] and extending the Gaussian noise component to
include heavy tails for ultrasound. Each approach has its advantages
and disadvantages.
Parametric models like Noisy Disk identify a small set of ranging

characteristics that affect localization. This provides useful insight
into ranging characteristics and the parametric form of the model can
be useful in theoretical analysis. One problem with parametric models
is that they need to be reevaluated and redeveloped for every new
noise characteristic. This is a tedious process requiring data collection
and careful analysis followed by a model verification process that
may require real localization deployments. Another problem is that
empirical ranging characteristics like those shown in Figures 5 and 4
can be too complex to capture in parametric form without some
simplification.
Statistical sampling solves both of these problems: new models do

not need to be created for new empirical distributions and complex
ranging characteristics can be easily captured. However, statistical
sampling does not reveal insights about the data nor does it provide
a mathematical form that can be used for theoretical analysis.
In practice, parametric modeling and statistical sampling carry

similar costs. Both require vast data collection. Parametric modeling
requires the user to estimate parameters σ and dmax from the data
while statistical sampling requires the user to generate data subsets
M(δ, ). During simulation, both methods require a single random
number to be generated for each ranging estimate.
The process of creating data subsets M(δ, ) is a form of data

modeling in the sense that it requires the user to identify which
subsets are important, and this method can be extended to model noise
characteristics besides noise and connectivity. For example, variations
between radios and antennas can be modeled by parameterizing each
node with the quality of its transmitter and receiver. These parameters
can be estimated from the empirical data using techniques described
in [37]. During simulation, each radio could be randomly assigned
transmitter and receiver parameters T and R and data could be pooled
and drawn from subsets M(δ, , T,R). As long as the parameters T
and R are assigned according to the true distribution of radios, this
should more accurately model non-uniformity of nodes than using
subsets M(δ, ).

XI. DISCUSSION
This study suggests a top-down approach to evaluating models

by comparing each model’s predictions with empirical observations
of localization deployments. This is in contrast with the commonly
used bottom-up approach for deriving models by analyzing raw
empirical data [38]. A bottom-up approach is useful for identifying
and characterizing the few most important features of empirical data
and building them into a model. A top-down approach can evaluate
whether the model is a sufficient representation of those features, and
whether that set of features is sufficient to represent the empirical
data.
Our study finds that the Noisy Disk model predicts deployment

error fairly well in situations when density is high enough and noise

is sufficiently Gaussian. However, deviations from the Noisy Disk
model in both connectivity and noise can have significant impacts on
localization algorithms. Modalities such as ultrasonic ranging may
have non-Guassian ranging noise, and a single outlier can cause large
errors in several shortest-path or bounding box estimates. As density
decreases, the transition region in ranging connectivity reduces the
total number of ranging estimates and average node degree. This
reduced connectivity can easily dominate the effects of ranging noise.
Finally, at least for RSS deployments at low densities, noise and
connectivity alone do not sufficiently represent all empirical ranging
characteristics; other effects like variations among radios may also
effect RSS noise and/or connectivity. These findings provide insight
into the empirical nature of ranging characteristics and how they
impact localization, suggesting directions for the future design of
both ranging models and localization algorithms.
Many multihop localization algorithms have yielded extremely

accurate results in simulation but there has been a general feeling
in the community that obtaining these results is much harder in real-
world deployments. To some extent, this study explains why this is
true by identifying where the Noisy Disk model deviates from real-
world ranging characteristics. The statistical sampling techniques we
present can facilitate the design, testing, and preparation of future
deployments by bringing real-world data into simulation.
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