Capture Sensing Simultaneous Access

Xiaofan Jiang

Motivation

- **Cascade**
 - Fast sequential flooding
 - Safe concurrent transmissions
 - Massive spatial reuse
 - Optimization in the network layer

CAPTURE SENSING SIMULTANEOUS ACCESS

UNDER BROADCAST
- Fast sequential flooding
- Safe concurrent transmissions
- Massive spatial reuse
- Optimization in the network layer

UNDER UNICAST
- Spatial reuse
- Reduce hidden-terminal
- More precise backoff than CSMA
- Pipelining

TRADEOFFS BETWEEN:
- Complexity
- Hidden-terminal
- Memory requirement
- Link vs Transport Layer

Protocols

BROADCAST / FLOOD

- **Application**
 - Flooding / reprogramming / dissemination

- **Protocols**
 - CSMA+MsgID (CSSA-B1)
 - Fast sequential flooding
 - Pipelining
 - TxD: MsgID Payload
 - Rx: Will receive at least one correctly

- **CSSA-B1 +**
 - Reduce hidden-terminal
 - TxD: MsgID Payload
 - Rx: MCTS if not yet muted by other

- **CSSA-B2**
 - More precise backoff than CSMA
 - TxD: MsgID+MCTS*(+TTS*)(+ACK)
 - Rx: Will receive at least one correctly

UNICAST

- **Application**
 - MintRoute / STRAW / Trickle / Drip&Drain / etc

- **Protocols**
 - CSMA-B2 for unicast
 - Reduce hidden-terminal
 - TxD: MsgID Payload
 - Rx: MCTS if not yet muted by other

2-lvl table+TTS+NCTS (CSSA-U2)

- **Application**
 - Spatial reuse
 - Reduce hidden-terminal
 - Require setup phase for table construction

Simulation

Multi-hop Flooding using CSSA-B1

Multiple Unicasts using CSSA-U2

Multi-hop Flooding using CSSA-B1

Setup

- **Capture table building in unicast scenarios**
- **Conservative setup:**
 - Refrain from sending if anybody is in data section
 - Only listen to NACK when I want to transmit (no time-stamping)

Simulation Setup and Assumptions

Assumptions:
- Symmetric radio links
- Unit disk model
- Capture works (but not always true as stated above)
- Gaussian backoff time
- Carrier sensing is simulated by mote checking if any neighbor is in transmit mode
- Does NOT simulate all possible hidden-terminal scenarios, but treat CSMA and CSSA equally

Setup:
- Capture table building in unicast scenarios
- **Conservative setup:**
 - Refrain from sending if anybody is in data section
 - Only listen to NACK when I want to transmit (no time-stamping)

Related Work

 - A study of the capture effect in simple 3 node scenarios
 - Shown that the capture effect is significant and can be fairly easily used
- Experimental Analysis of Concurrent Packet Transmissions in Low-Power Wireless Networks [Son, et al.]
 - A systematic study of the capture effect in terms of SINR, and also multiple interferences
 - Shown that RSSI correlates to packet reception ratio if RSSI < -55dBm
 - Shown that additivity of interference does not hold (|RSSI(m) - RSSI(e)|)
 - J RSS(m) follows the single strongest interferer if number of interferers not large; J RSS(m) approaches J RSS(e) as # of interferers becomes large
 - THIS MEANS THAT MY SIMULATIONS IS LESS ACCURATE WHEN NEIGHBORHOOD BECOMES LARGE

Conclusions / Future Work

- Capture effect can be exploited to improve spatial reuse in both broadcasts and unicasts
- Capture often involve tradeoffs between simultaneity, hidden-terminal, and cost (preamble length, memory, energy)
- Plan to implement in MICA2 (CC1000) and possibly Telos (CC2420)

Thanks

Kamin Whitehouse, Prabal Dutta, Dima Ryazanov, David Culler