Capture Sensing Simultaneous Access

Xiaofan Jiang

Motivation

- ♦ CSMA is the predominant sensor networks link level protocol
- CSMA sacrifices spatial reuse for less collision
- ♦ CSMA still has the hidden-terminal problem
- ♦ RTS/CTS reduces hidden-terminal (for unicast only) but incur overhead

	PACKET A				
	PRE	AMBLE		PAYLOAD	
PREAM	BLE	PAYLOAD			
PACKET B					
			•	В	
T1		R1	1		T2

- ♦ Most radios (including FSK radios used on motes) are able to recover the stronger packet (called Capture effect)
- ♦ Minor MAC modification allow us to recover node ID of both stronger and weaker transmitters
- ♦ Capture effect can aid us in designing better link layer protocols
- ♦ Have different benefit and tradeoffs under broadcast vs unicast

CAPTURE SENSING SIMULTANEOUS ACCESS

UNDER BROADCAST:

- → Fast sequential flooding
- ♦ Massive spatial reuse
- ♦ Optimization in the network layer

UNDER UNICAST:

- ♦ Spatial reuse
- ♦ Safe concurrent transmissions ♦ Reduce hidden-terminal ♦ Complexity
 - ♦ More precise backoff
 - than CSMA
 - ♦ Pipelining

TRADEOFFS BETWEEN:

- ♦ Spatial reuse
- ♦ Hidden-terminal
- ♦ Memory requirement
- ♦ Link vs Transport Layer

Related Work

- ♦ Exploiting the Capture Effect for Collision Detection and Recovery [Whitehouse, et al.]
 - ♦ A study of the Capture effect in simple 3 node scenarios
 - ♦ Shown that the capture effect is significant and can be fairly easily used
- ♦ Experimental Analysis of Concurrent Packet Transmissions in Low-Power Wireless Networks [Son, et al.]
 - ♦ A systematic study of the capture effect in terms of SINR, and also multiple interferences
 - ♦ Shown that RSSI correlates to packet reception ratio if RSSI < -55dBm</p>
 - ♦ Shown that additivity of interference does not hold (JRIS(m) != JRIS(e))
 - JRIS(m) follows the single strongest interferer if number of interferers not large; JRIS(m) approaches JRIS(e) as # of interferers becomes large
 - ♦ THIS MEANS THAT MY SIMULATIONS IS LESS ACCURATE WHEN NEIGHBORHOOD BECOMES LARGE

Simulation Setup and Assumptions

Assumptions:

- ♦ Symmetric radio links
- ♦ Unit disk model
- ♦ Capture works (but not always true as stated) above)
- ♦ Gaussian backoff time
- ♦ Motes placement in network is uniform random
- ♦ Carrier sensing is simulated by mote checking if any neighbor is in transmit mode
- Does NOT simulate all possible hidden-terminal scenarios, but treat CSMA and CSSA equally

- ♦ Capture table building in unicast scenarios
- ♦ Conservative setup:
 - ♦ Refrain from sending if anybody is in data section
 - ♦ Only listen to NACK when I want to transmit (no timestamping)

Conclusions / Future Work

- ♦ Capture effect can be exploited to improve spatial reuse in both broadcasts and unicasts
- ♦ Capture often involve tradeoffs between simultaneoality, hiddenterminal, and cost (preamble length, memory, energy)
- → Plan to implement in MICA2 (CC1000) and possibly Telos (CC2420)

Protocols

BROADCAST / FLOOD

Application

♦ Flooding / reprogramming / dissemination

CSMA+MsgID (CSSA-B1)

- ♦ Fast sequential flooding
- ♦ Pipelining

·			
Tx1:	MsgID	Payload	
Tx2:	If MsgID=myMsgID ->send		
Rx:	Will receive at least one correctly		

MsgID+MCTS*(+TTS*) (CSSA-B2)

- ♦ CSSA-B1 +
- ♦ Reduce hidden-terminal

Tx1:	MsgID	Payload	
Tx2:	If MsgID=myMsgID ->ser		
Rx:	MCTS	If not yet muted by others!	
		by others!	

*MCTS: Message-Clear-to-Send

Receiver acks transmitter's message signature to avoid hidden-terminal from another transmitter

Nodes records all MCTS with expiration MCTS is **MESSAGE-BASED ACKING**

*NCTS: Not-Clear-to-Send

Before TTS expires, receiver checks its Capture Table and NACKs nodes who are stronger than original transmitter

NCTS is *ID-BASED NACKING* and requires knowledge of the Capture Table

Application

♦ MintRoute / STRAW / Trickle / Drip&Drain / etc

MsgID+MCTS*(+TTS*)(+ACK) (CSSA-U1)

UNICAST

- ♦ CSSA-B2 for unicast
- ♦ Reduce hidden-terminal

2-IvI table+TTS+NCTS (CSSA-U2)

- ♦ Spatial reuse
- → Reduce hidden-terminal
- ♦ Require setup phase for table construction

SETUP PHASE: For every node, 2 of its

neighbors chirp at around same time, record winner and losers in a table. Repeat for all pairs of neighbors. This is the Capture Table

Tx1:	SRC TTS DST	Payload
Rx:	NACK x,y	Checks table
Tx2:	Am I 'x,y'?	SRC TTS DST

*TTS: Time-to-Send

Transmitter encodes a countdown timer (TTS) in preamble as a window of time for other transmitters to receive NACK

Simulation

Multi-hop Flooding using CSSA-B1

using CSSA-U2 Speed Increase vs. Preamble Length

Multiple Unicasts

Multi-hop Flooding using CSSA-B1

Multiple Unicasts using CSSA-U2

Thanks

20 25 30 35 40 45 50

Kamin Whitehouse, Prabal Dutta, Dima Ryazanov, David Culler